Short sequence-paper

pzl-1 encodes a novel protein phosphatase-Z-like Ser/Thr protein phosphatase in *Neurospora crassa*

Balázs Szőőr
Zsigmond Fehér
Tamás Zeke
Pál Gergely
Einat Yatzkan
Oded Yarden
Viktor Dombrádi

* Department of Medical Chemistry, University Medical School of Debrecen, H-4012 Debrecen, Hungary

** Department of Human Genetics, University Medical School of Debrecen, H-4012 Debrecen, Hungary

* Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Received 30 June 1998; accepted 27 August 1998

Abstract

The gene and cDNA of a novel protein phosphatase were cloned from *Neurospora crassa*. The *pzl-1* gene encompasses three introns and is localized to the left arm of chromosome I between *cyt-21* and *Fsr-12*. It encodes a protein of 58.3 kDa containing a Ser/Pro rich N-terminal segment, and a C-terminal domain that is similar to the catalytic subunit of type 1 protein phosphatases. The first 51 amino acid residues, including a potential N-myristoylation site, as well as the C-terminal domain (about 300 residues) have a high level of sequence identity with yeast PPZ phosphatases. However, residues 52–208 do not share high similarity with other proteins. The mRNA of *pzl-1* was detected in all phases of asexual development of the filamentous fungus. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Ser/Thr protein phosphatase; PPZ-like protein; Fungal development; (*Neurospora crassa*)

Protein kinases and phosphatases cooperate in interlocking regulatory cycles to control the phosphorylation state of target proteins in eukaryotic cells. They regulate practically all aspects of cellular functions through this reversible posttranslational modification. Protein kinases evolved from a common ancestor, while protein phosphatases (PP) belong to several distinct superfamilies [1]. In the PP1–PP2A–PP2B family of Ser/Thr protein phosphatases, besides the biochemically well characterized members there are some less abundant representatives whose existence has been revealed by molecular cloning [2].

One group of these novel phosphatases, termed PPZ, was found in budding and fission yeast only. *Saccharomyces cerevisiae* has two related genes, *PPZ1* and *PPZ2*, whose products *ppz1* and *ppz2* contain a C-terminal domain that resembles the catalytic subunit of PP1 [3–5]. Disruption of these genes resulted in a caffeine and temperature sensitive cell lysis [5,6]. Genetic evidence suggested that *PPZ1* and *PPZ2* were involved in the osmotic stability of the cells [4–6], and interacted with the *ENA1* P-type ATPase [7] and the *PKC1* protein kinase C-mediated signaling pathway [8]. An unusual feature of the PPZ enzymes is their less conserved Ser-rich N-terminal domain. Although the C-terminal domain of *ppz1*...
was shown to be sufficient for catalytic activity, the presence of the N-terminal segment was essential for the full physiological function [9]. The homologue of PPZ termed Pzh1 has recently been cloned from Schizosaccharomyces pombe [10]. The C-terminal domain of this protein is similar to that of ppz1 and ppz2; however, its N-terminal part, with the exception of about 40 amino acids, is unrelated to the S. cerevisiae counterparts. Like the baker’s yeast enzymes, the fission yeast pzh1 affects salt tolerance [7,10] but has additional distinct functions as well [10]. In the present communication we demonstrate that a PPZ-like gene is present not only in yeast but also in N. crassa, a filamentous fungus.

Previously we identified the activity of PP1 in N. crassa extracts and characterized the biochemical properties of the purified PP1 catalytic subunit [11]. In order to clone its gene we screened the N. crassa pSV50 cosmid genomic library [12] with a 0.68 kb Drosophila PPI(87B) cDNA fragment [13] labeled by [α-32P]dCTP and the Megaprime random primed labeling kit (Amersham). Seven positive clones were isolated by colony hybridization. Restriction analysis revealed that two pairs of strongly hybridizing clones were identical. The representatives of the two pairs (termed P5A1 and P29) were selected for further analysis. The EcoRI–HindIII fragments of 5.2 kb and 4.0 kb were isolated from P5A1 and P29, respectively. They were subcloned into Bluescript pSK+ plasmid (Stratagene) and were sequenced by the di-deoxy chain termination method [14] using Sequenase 2.0 (USB), [α-32P]dATP (Amersham) and synthetic oligonucleotide primers (Fig. 1). Initial sequence analysis revealed that P29 represented a truncated form of P5A1, hence the latter was used in the subsequent studies.

3401 nucleotides of the P5A1 clone were sequenced and its 2.1 kb XbaI–EcoRI fragment (nucleotides −138 to 2029) was utilized as a probe in screening a λ ZAPII cDNA library prepared from conidiating cultures of N. crassa (FGSC). A single positive clone was identified under stringent hybridization conditions. The pSK+ vector was excised from the phage and its 3.0 kb insert was sequenced (Fig. 1). Excluding the three intron regions, the cDNA and genomic sequences were identical. The first intron (nucleotides −718 to −432) is in the 5′-noncoding region while the second (nucleotides 1414 to 1470) and the third (nucleotides 1624 to 1678) introns are at the 3′-end of the coding region. All of the introns contain the Neurospora consensus sequences of splice sites (GTRNGY at the 5′-end and NYAG at the 3′-end) as well as the internal lariat sequence (RCTRAC) close to the 3′-end [14]. In intron 1 there are two putative lariat sequences separated by 20 and 12 nucleotides from the 3′-end consensus. The 5′-noncoding sequence is unusually long (1566 nucleotides) and contains a CAAT box (starting at nucleotide −1537), six overlapping TATA box-like motifs (starting at nucleotide −1480) followed by three so-called +1 sequences (TCATCATC starting at nucleotide −1427) that are characteristic to the region around the transcription start site in N. crassa [15]. The 3′-noncoding region is rather short and is truncated in both sequences because it terminates in an EcoRI site that was used in the construction of the P5A1 clone as well as the cDNA library. The longest open reading frame in the cDNA (1593 bp) encodes a protein of 531 amino acids. The putative translational initiation site is the first ATG in the cDNA; 9 out of 13 nucleotides in this region match the Kozak’s consensus for N. crassa [16]. The predicted amino acid sequence consists of two parts (Fig. 2). The N-terminal 208-amino-acid long stretch is rich in Ser and Pro residues. The very first 51 residues are reminiscent to the N-terminal end of the yeast PPZ protein phosphatases (41–45% identity), including Gly-2 within a recognition consensus for myristoylation [9,10] (Fig. 2B). The myristoylation of this residue was proven in S. cerevisiae ppz1, and its essential role in the protein’s physiological function was demonstrated by site-directed mutagenesis [9]. The C-terminal portion of the protein spanning about 300 amino acids is similar to type-1 Ser/Thr protein

Fig. 1. Nucleotide and amino acid sequences of N. crassa pzl-1 gene and cDNA. In the nucleotide sequence introns are shown in lower case with splice sites and internal consensus sequences highlighted in boldface. The initiating methionine as well as putative CAAT, +1 sequences and the TATA box-like motifs are shown in bold capitals. The stop codon is marked by an asterisk. The designation, position and direction of oligonucleotide primers used in RT–PCR are shown above the nucleotide sequence. Amino acid residues and nucleotides are numbered on the right of each line. The first 68 nucleotides were sequenced in the cDNA only.
phosphatases (Fig. 2C). The highest level of identity was found with *S. cerevisiae* ppz1 (75%), ppz2 (74%) and *S. pombe* Pzh1 (76%) catalytic domains. Much smaller identity values were obtained with *A. nidulans* bimG (59%), a PP1 phosphatase from another filamentous fungus [17], and the known type-2 protein phosphatases of *N. crassa* pph-1 (39%), CaM-PrP (29%) and ppt-1 (26%) [18–20]. All the residues characteristic of the PP1–PP2A–PP2B family members [21], as well as the residues implicated in the formation of the catalytic cleft in rabbit and human PP1 [22,23], are conserved in the *N. crassa* protein. Besides the conserved residues characteristic of type 1 protein phosphatases, we found 38 amino acids that were identical in all known PPZ forms but not in PP1. These signature motifs (Fig. 2) strongly suggest that the novel gene isolated in our laboratories encodes a PPZ-like protein, thus it was designated *pzl-1*. However, the similarity to PPZs is restricted to the C-terminal catalytic domain and a short N-terminal segment. Residues 52–230 of *N. crassa* PZL1 exhibit only 26–28% identity to the corresponding regions of *S. pombe* or *S. cerevisiae* PPZ homologues, and has a similarly low level of identity to several unrelated Ser- and Pro-rich protein segments in the SwissProt database (release 35.0). This region may have a specific function characteristic to PZL1. The last 20 amino acids are also dissimilar. The predicted molecular mass of PZL1 (58.3 kDa) is smaller than that of *S. cerevisiae* ppz1 (77.5 kDa), ppz2 (78.5 kDa), and is close to that of *S. pombe* Pzh1 (57 kDa) [4–10].

The *pzl-1* gene was mapped by RFLP analysis. *N. crassa* was cultured and harvested as described earlier [11]. Oak Ridge (FGSC4411), Mauriceville-1C-A (FGSC4416) strains and the progeny of their ‘small cross’ were used for the gene mapping [24]. Two of the tested restriction enzymes, *Bst* EII and *Acc* I, yielded polymorphic patterns with the parental strains when analyzed with the random primer labeled insert of P5A1 genomic clone as a probe. The hybridization pattern obtained with *Bst* EII revealed that the gene is located at the left arm of chromosome I between *cyt-21* and *Fsr-12* (Fig. 3).

![Fig. 3. Chromosomal localization of the *N. crassa* pzl-1 gene by RFLP. Southern blot analysis was carried out after *Bst* EII digestion of 18 progeny, originating from the ‘small cross’ as well as the parental Oak Ridge (O) and Mauriceville-1C-A (M) strains. Fungal Genetics Stock Center numbers are shown above the lanes. The segregation pattern of *pzl-1* among the progeny of the cross is indicated in capital letters.](BBAPRO 30416 6-10-98)
Results obtained with AccI-digested DNA confirmed the chromosomal localization of \(pzl-1 \) (data not shown).

Although the cDNA of the gene had been cloned we were unable to detect the \(pzl-1 \)-specific mRNA by Northern blotting, most probably due to its low abundance. We therefore used the reverse transcriptase–polymerase chain reaction (RT–PCR) to detect \(pzl-1 \) transcripts. Total RNA was isolated and equal quantities (2 \(\mu g \)) of DNase-treated RNA were analyzed by the Promega access RT–PCR kit using the N1–N9 and N1–N5 primer combinations (see Fig. 1). The expected 0.36 and 0.6 kb fragments were amplified (not documented). Since the sizes of PCR products obtained from the RNA and DNA preparations was identical, the efficiency of the DNase treatment was tested with \(rgb-1 \)-specific oligonucleotides (\(rgb-1 \) encodes the B regulatory subunit of \(N. crassa \) PP2A; Yatzkan and Yarden, unpublished results). The latter span an intron region in \(rgb-1 \) and yield in a larger PCR fragment with the genomic DNA preparation.

Only the smaller fragment was obtained in the DNase-treated RNA preparations, indicating that the \(pzl-1 \) RT–PCR products were not generated from contaminating genomic DNA. Using synchronized \(N. crassa \) cultures [20], we noticed that the \(pzl-1 \) gene was expressed in all stages of the asexual development (Fig. 4).

This work was supported by the Hungarian Research Council, Grant OTKA 22675, BARD – The US/Israel Binational Agricultural Research and Development Fund, and a bilateral Israeli/Hungarian exchange program ISR-2/96. B.S. was the recipient of a CEF 1559 travel fellowship. The authors thank Dr. Joaquin Ariño and Dr. János Pósfai for their valuable comments on the sequences.

References

